Hi, <br /><br />Great opportunity to hear about Daniel's glider research this Thursday at 1 pm.<br /><br />Jenny<br /><span class="sender"><div class="mimepart text html"><span><p><table><tbody><tr><td bgcolor="#FFFFFF" text="#000000"><p>
____________________________________________________________________________________________________________________________________________________________________________________________<br />
<br />
Hello Everyone,
</p><div class="moz-forward-container">
<div><br />
</div>
<div>I will be giving an exit seminar on this Thursday, March 10
at 1:00 pm in the Marine Science Auditorium. If you don't know
what my research is about, please read the abstract below. If
you can't make the talk, then you should still come to the
reception (with food and beer) afterward. Looking forward to
seeing everyone! </div>
<div><br />
</div>
<div>Daniel</div>
<div><br />
</div>
<div>Abstract: </div>
<div><i><font face="Times New Roman, serif"><span style="line-height: 115%;">Underwater gliders are a type
of autonomous vehicle that collect
profiles of temperature, salinity, current velocity, and
other variables with
high sampling frequencies. While measuring temperature and
salinity is
relatively straightforward, calculating ocean currents is
much more challenging.
To calculate ocean currents from a moving glider, the
velocity of the glider
relative to the earth must be calculated. In this study,
we present three
methods for dead-reckoning the velocity of the glider
relative to the Earth. Using
these different methods, we calculate currents measured by
gliders and compare
those results with a nearby (<1 km) ADCP that was
bottom mounted and upward
looking. We also present a method to calculate the
glider’s angle of attack,
which plays a significant role in the accuracy of the
glider’s measured
currents. Additionally, we compare time series of
temperature from the mooring
and glider based upon the glider’s horizontal distance
from the mooring. </span><span style="line-height:
18.4px;">Correlations</span><span style="line-height:
115%;"> of temperature and current velocity measured by
the glider </span><span style="line-height: 18.4px;">and</span><span style="line-height: 115%;"> mooring are </span><span style="line-height: 18.4px;">significant. </span><span style="line-height: 115%;">RMS differences of current
velocities between platforms indicate an improvement in
our results over existing methods.</span></font></i></div>
<div><br />
<br />
--<br signature="separator" />
Daniel Ellis
<div>
<div>Interdepartmental Graduate Program in Marine Science<br />
University of California,<br />
Santa Barbara CA 93106-6150</div>
</div>
<div><a href="http://sbc.lternet.edu/cgi-bin/ldapweb2012.cgi?stage=showindividual<er_id=dellis" moz-do-not-send="true" target="1">Personal
website</a></div>
</div>
<br />
</div>
<br />
</td></tr></tbody></table>
</p></span></div><br /><br />--<br signature="separator" /><div align="" left""=""><font face="Tahoma" size="2"><b>Jenny Dugan</b><br /></font></div><font face="Tahoma" size="2">Marine Science Institute<br />University of California<br />Santa Barbara, CA 93106-6150<br />Phone: 805-893-2675</font><font face="Tahoma" size="2"><font #191970""="" color=""><font color="#000000"><br />email: j_dugan@lifesci.ucsb.edu<br /></font></font></font><font face="Tahoma" size="2"><a href="" http:="" index.html""="" sbc.lternet.edu="">http://msi.ucsb.edu/people/research-scientists/jenny-dugan </a></font><font 2""="" face="Tahoma" size=""><font #191970""="" color=""><font size="2"> </font><br /></font></font><font color="#2f4f4f" face="Tahoma" size="2"><a href="" http:="" index.html""="" sbc.lternet.edu=""><font color="#000000">SBC LTER:</font> </a></font><font face="Tahoma" size="2"><a href="" http:="" index.html""="" sbc.lternet.edu=""> http://sbc.lternet.edu/index.html</a></font><font face="Tahoma" size="2"> <br /></font></span>