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ABSTRACT

Long-term experiments are important in evaluating ecosystem properties and processes 

that are slow to develop or require proper evaluation over an appropriately variable climate. 

We repurpose the wealth of data accessible through the forty-year-old Long-Term Ecological 

Research (LTER) network with a novel moving window algorithm and meta-analysis approach to

ask if aspects of study taxa or environment alter the extent of research necessary to detect 

consistent results, or the proportion of spurious short-term trends. We found that experimental

studies focused on plants, and those conducted in dynamic abiotic environments, were 

characterized by longer critical temporal thresholds and more spurious trends. Further, nearly 

half of the studies we investigated required 10 years or longer to reach a temporal threshold, 

and 4 studies (of 100) required longer than 20 years. We champion long-term data and argue 

that long-term experiments are more necessary than ever to understand, explain, and predict 

long-term trends. 
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1. INTRODUCTION

Long-term experiments are essential in the study of ecology: critical in isolating and 

understanding the ecological consequences of global land use and climate change (Del-Val & 

Crawley 2005; Haddad et al. 2015; Gonzalez et al. 2016; Hughes et al. 2017; Van Klink et al. 

2020). Long-term data are especially important in evaluating ecosystem properties and 

processes that require proper evaluation over an appropriately variable climate or are slow to 

develop (Tilman et al. 1994; Rasmussen et al. 1998; Knapp et al. 2012). However, for a variety 

of reasons, short term experiments are the benchmark in ecology. Short term experiments, 

which are more consistent with typical grant cycles and graduate programs, are important for 

identifying ecosystem-related changes in a timely and cost-effective manner. Despite this, 

research conducted at constrained time scales has the potential to be misleading, either 

capturing spurious short-term trends or failing to detect trends at all (Bahlai et al. 2020; Cusser 

et al. 2020). If ecosystem properties, processes, or particular taxa are slow to change, develop, 

or become apparent to observers, lagged responses may lead to inappropriate assessments of 

experimental outcomes over short periods. As such, temporally restricted research may merely 

capture a snapshot of ecosystem properties as they gradually respond to manipulation (Hanski 

& Ovaskainen 2002; Helm et al. 2006; Knapp et al. 2012; Jarvis & Williams 2016; Voelkl & 

Würbel 2016). Rarely is data collected at time scales that can either be examined to instill 

confidence in proposed long-term trends or determine the extent of misleading short-term 

trends. One place where this is possible, and is the focus of our study, is in the forty-year old 

Long-term Ecological Research (LTER) network. The LTER network not only provides a ‘sandbox’ 

in which to examine long-term responses to experimental manipulation, it also allows us to 
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contextualize shorter term studies by parsing apart ephemeral, lagged or spurious responses 

from those that are genuine changes in system behavior. 

Long-term studies are essential in determining experimental outcomes in dynamic 

environments that require evaluation over an appropriately variable climate (Ives & Carpenter 

2007). Ecological systems are inherently dynamic, and variation can be driven by a variety of 

stochastic and deterministic processes (Folke 2006; Suding & Gross 2006; Hastings 2010; 

Beckage et al. 2011). The findings of short-term experimental studies may be the product of 

these processes, and thus are not always indicative of the long-term trends of that system 

(Turchin 2003; Carey & Cottingham 2016). For example, a four-year study of firefly populations 

located in a dynamic Midwestern environment could have concluded that local populations 

underwent drastic changes in abundance over a short period. Yet, with longer observations of 

that same population, researchers found that variation was short lived and that populations 

underwent no significant change over a longer period (Hermann et al. 2016; Bahlai et al. 2020). 

In this case, a shorter study could have resulted in highly-confident, though thoroughly 

misleading conclusions.

Further, population abundance may respond slowly to experimental manipulation, only 

reaching a delayed response after some temporal threshold is met for that particular taxa 

(Krauss et al. 2010). These temporal thresholds are likely to be closely linked to taxa specific 

life-history traits, including generation time, dispersal and colonization ability, and dormancy 

periods, among others. For example, if long-lived plants can survive initial experimental 

disruption, changes in plant population abundance may take many generations to become 

apparent, even if the immediate results are measurable in reduced individual fitness (Tilman et 
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al. 1994; Cousins et al. 2007; Ellis & Coppins 2007; Gustavsson et al. 2007; Jackson et al. 2009; 

Haddad et al. 2015). Also, a plant’s seed bank may further prolong the lag in response, replacing

individuals lost in the adult population following disturbance (Plie et al. 2017). Some animals, 

due to their relatively short generation time, high mobility, and potential to track resources in 

novel environments, may respond more rapidly to manipulation (Kuussaari et al. 2009; Krauss 

et al. 2010), and may consequently not require long experiments to confidently determine 

consistent results from manipulation. 

We focus our quantitative synthesis on a single response in experimental studies: 

population level organismal abundance. While patterns of abundance are themselves a 

fundamental issue in ecology, they also underlie some of the most basic questions in the field 

and have been used to develop hypotheses concerning species response to climate change, 

identify probable locations of pest outbreaks, and choose the location of natural reserves (Elton

& Nicholson 1942; Altieri et al. 1984; Pounds et al. 1999; Sagarin et al. 2006). Given that 

measures of organismal abundance are relatively quick to execute, consistently apparent 

between observers and years, and an intuitive measure of population condition in some 

systems, abundance is a regularly collected and relatively comparable metric between studies. 

Here we make two hypotheses concerning organismal abundance: H1) If studies take place 

in highly variable environments, with increased system-specific abiotic variation, then studies of

those systems will require longer periods of study to detect consistent results, and result in a 

higher proportion of spurious short-term trends, than those studies in environments with more 

consistent abiotic variables. H2) If taxa have long generation times or low dispersal and 

colonization abilities, then studies of those taxa will require longer periods of study to detect 
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consistent results, and result in a higher proportion of spurious short-term trends than taxa 

with shorter generation times, high mobility, and potential to track resources in novel 

environments.  Specifically, we predict that studies taking place in highly variable abiotic 

environments, with large temperature and precipitation oscillations throughout the year, will 

require longer study periods to reach consistent results, and be more often characterized by 

misleading results than more abiotically stable systems. Second, we predict that experiments 

investigating plant taxa will require longer periods of study to form confident conclusions, and 

be more often characterized by high proportions of misleading short-term trends, than 

experimental studies focused on animal taxa. To test these predictions, we use a moving 

window algorithm and meta-analysis approach to repurpose the wealth of data across studies 

of organismal abundance accessible through the forty-year-old Long-Term Ecological Research 

(LTER) network. We champion the importance of long-term data and posit that long-term 

experiments are more necessary than ever to understand, explain, and predict long-term 

trends. 

2. METHODS

2.1 Meta-Analysis and Moving Window Approach

We searched the forty-year-old Long-term Ecological Research database network portal 

(https://portal.lternet.edu/nis/home.jsp) to identify and repurpose relevant long-term 

experimental datasets reporting organismal abundance. We systematically explored each of the

6,957 unique datasets, from 30 locations that were available as of December 2018. Only 

datasets that met five requirements were included in our analysis: 1) research lasted ten years 

or longer; 2) included at least ten years of data, and  data could be expressed as a summary 
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metric at a yearly resolution; 3) documented a press experiment (Bender et al. 1984) in which 

treatments could be divided into a 'control' and 'treatment’ category; 4) treatment response 

was recorded as a measure of organismal abundance; and 5) the dataset included at least one 

statistically significant linear relationship over time, described below. Some study sites 

contained multiple datasets documenting organismal abundance time series, and some 

datasets quantified multiple taxa responses to the same experimental manipulation. Time 

series were divided into the finest taxonomic resolution available for analysis (i.e. order, 

genera, species, or morphospecies). Whenever possible, each organism within each dataset at 

each site was analyzed separately. 

Because the fundamental response we sought to examine was the difference between 

treatments, we calculated effect size, yearly, for each organism time series by treatment pair. 

For each year of each dataset we calculated effect size as Hedges' g. As such, effect size was 

calculated as: [xt – xc] / SDp, where xt is the average treatment population size in that year, xc is 

the average control population size in that year, and SDp is the pooled standard deviation of 

that year. Hedges' g corrects for bias due to small sample size (Rosenthal et al. 1994). 

To understand the period of time needed to identify long-term trends, we applied a 

moving window algorithm developed in R (Bahlai et al. 2020). First, we fit linear models to 

defined subsets of each dataset and produced summary statistics of interest (i.e. slope of the 

relationship between Hedges' g and time, standard error of this relationship, and p-value). The 

algorithm then iterated through each dataset at set intervals. We used moving windows of 

three-year periods or longer, fed each interval through the algorithm described above, and 

compiled resulting summary statistics for each study. Thus, we examined, and compiled, every 
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possible subset of at least three years duration or longer. As described above, only datasets 

that met our requirements were included in our analysis. To comply with our fifth requirement, 

that all datasets contain at least one linear relationship over time, we removed the 22 datasets 

that otherwise met our requirements but lacked any significant linear trend, as this situation 

would indicate there is no change in the difference between treatments over time for any 

possible study duration.  No adjustments were made for multiple statistical comparisons in our 

analysis as each linear regression was considered in isolation, as a hypothetical observation 

period which an observer would use to reach conclusions regarding system behavior, from non-

independent but still separate experimental durations. Conceptually, we were interested in the 

trajectory of the relationship between Hedges' g and time, and how linear regression model 

outputs vary with sample period duration. 

2.2 Response Variables: Extracting temporal thresholds and percent spurious trends

With trends from each study plotted against corresponding window length, we extracted a 

critical temporal threshold from each moving window plot. First, we sorted studies into those 

with long-term trends (i.e. those with a significant trend for the entire dataset or an overall 

increase or decrease in abundance over the study period, Fig. 1a) and those without (i.e. those 

with no significant trend for the entire dataset, Fig. 1b). For each dataset with a long-term 

trend, we determined the minimum number of years until all trends agreed with the long-term 

trend (i.e. all trends of that duration are significant and in the same direction as the long-term 

trend). For each dataset lacking a long-term trend, we determined the minimum number of 

years to avoid all spurious results (i.e. all trends of that duration are not significant). As such, 

both datasets with and without long-term trends were scored for a critical temporal threshold.  
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We also calculated the percent of spurious results found in each dataset. For datasets with long

term trends, spurious trends were those periods with significant trends in the direction 

opposite to the long-term. For datasets which lacked long term trends, any significant results 

were considered spurious. Percent spurious trends were determined for each study as the 

number of spurious trends / total number of trends (Fig. 1).

2.3 Categorical and Continuous Explanatory Variables

To address our first hypothesis, concerning the extent of abiotic variation of each study 

site, we extracted WorldClim v2 Bioclim variables for each LTER location (Busby 1991), including

Isothermality, Precipitation Seasonality, and Annual Precipitation. We use the BIOCLIM variable 

of isothermality as a single measure of temperature fluctuation at each of our sites, as it 

quantifies how large the day- to-night temperatures oscillate relative to the summer- to-winter 

(annual) oscillations. As such, sites with low isothermality, were located in the most variable 

abiotic environments. To address our second hypothesis, concerning slow to change properties 

or processes, we divided datasets into two categories: those focused on plants and those 

focused on animals. 

2.4 Analysis

We screened continuous explanatory variables (i.e. Isothermality, Precipitation 

Seasonality, and Annual Precipitation) for multi-collinearity using the ‘vifstep’ function in the R 

statistical package ‘usdm’ (Naimi 2015). Because climatic variables are inherently correlated, we

chose a conservative theta value of VIF < 2 to eliminate collinearity from our models (O’Brien 

2007).  With any collinear variables removed, we use generalized linear mixed models (GLMMs)

to determine the relationship between categorical (i.e. plant or animal) and continuous 
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explanatory variables and our two response variables (i.e. critical temporal thresholds and 

percent spurious trends) using the ‘glmer’ function in the package ‘lme4’ (Bates et al. 2014). We

used explanatory variables as fixed effects and ‘LTER dataset’ nested within ‘LTER Site’ as a 

random intercept.  Continuous climatic variables were scaled around zero to account for 

differences in magnitude and Poisson and Gaussian distributions were used for critical temporal

threshold and percent spurious results, respectively. We then used sample-size corrected 

Akaike Information Criterion (AICc, Burnham & Anderson 2004) to select among all possible 

combinations of the fixed effects using the ‘dredge’ function in the R package ‘MuMIn’ (Barton 

& Barton 2015). To characterize the top models, we used the function ‘model.avg’ in the 

package ‘MuMIn’ (Barton & Barton 2015) to average models within an AICc of less than 2. We 

applied a Poisson GLMM, and tested for overdispersion, of which we found no evidence. 

3. RESULTS 

3.1 Meta-Analysis and Moving Window

We found 100 datasets from 28 distinct studies and 12 LTER sites that met our five 

requirements (Fig. 2, ESM table 1). Another 22 datasets met our first four requirements, but 

lacked any significant linear trend. Because these datasets essentially never reached our criteria

for stability regardless of the study duration, they were not likely to result in a consistent 

difference between treatments over time. Before the removal of these 22 datasets, we 

analyzed all 122 timeseries that met the first four requirements. Results followed identical 

patterns with and without the 22 datasets, thus we felt confident in our decision to remove 

them from analysis. A few of the datasets also had disjunct sampling schedules that included 

outlying terminal data points, sampled several years after the most recent continuous sampling 
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year. To ensure continuity with other studies, in these cases, the last, sequentially 

disconnected, datapoint was removed from the time series before datasets were included in 

analysis. Experiments ranged from the exclusion of herbivores (Sevilleta and Short Grass 

Steppe) and predators (Plum Island), to manipulating moisture (Konza Prairie and Sevilleta), 

nutrients (Arctic, Cedar Creek, Hubbard Creek, and Plum Island), pH (North Temperate Lakes), 

and temperature (McMurdo Dry Valleys), as well as deliberately altering species diversity 

(Cedar Creek), or removing plants by fire, grazing (Konza Prairie), trimming (Luquillo), 

mechanical tillage (Kellogg), or some combination thereof. For a full list of LTER sites and 

experiments involved in our analyses see ESM table 1. 

3.2 Response Variables: Extracting temporal thresholds and percent spurious trends

Of the 100 datasets, we found 24 studies with a significant trend for the full dataset (change

in abundance over the full study period), and 76 studies without a significant trend for the full 

dataset. Whether significant or not, it took 9.66 years on average (SE: 0.52, range 3 to 32) to 

achieve consistent results. On average, 11.7% (SE: 1.1%, range 0.7 to 47%) of significant trends 

derived from subsets of sampling years were spurious, not agreeing with the long-term pattern 

of the data.

3.3 Categorical and Continuous Explanatory Variables

Across datasets, precipitation seasonality averaged 59.52 mm (SE: 2.39 mm) and ranged 

from 9.4 mm (Plum Island) to 102.9 mm (Santa Barbara). Annual precipitation averaged 616.87 

mm (SE: 39.9 mm) and ranged from 68 mm (McMurdo Dry Valleys) to 2,115 mm (Luquillo) and 

Isothermality averaged 37.65% (SE: 1.22%) and ranged from 21.44% (McMurdo Dry Valleys) to 

71.52% (Luquillo). Of the three continuous variables, ‘Precipitation Seasonality’ was found to be
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collinear and was consequently removed from further analysis (Isothermality, VIF = 1.02; 

Annual Precipitation, VIF = 1.02). Of the 100 timeseries that contained at least one significant 

trend, 56 focused on animal abundance and 44 on plant abundance.

3.4 Analysis

Interpreting the results of our best performing models (Table 1), we found an 

interaction between our categorical variable (plant or animal) and one of our continuous 

variables (isothermality) in explaining the length of critical temporal thresholds (Fig. 3a). We 

found that plant studies had longer temporal thresholds, especially in highly dynamic 

environments, than animals. In terms of spurious results, our best model found that studies 

focused on plants were characterized by significantly more spurious results than those that 

focused on animals (Fig 3b). On average, 15% of significant plant trends were spurious, 

compared to only 9% of animal trends, nearly a two-fold increase. We found that abiotic factors

did not significantly influence the percent of spurious results. 

Addressing our first hypothesis, we found that both isothermality and the plant/animal 

distinction contributed to the length of critical temporal threshold (top model, AICc: 603.6). As 

the next best model had an AICc of 3.35 greater, the single lowest AICc model is our best for 

explaining critical temporal thresholds (Table 1). Addressing our second hypothesis, we found 

that the plant/animal distinction was the best predictor of percent spurious trends. The next 

best model had an AICc value of 8.97 greater than the top model and, as above, the single 

lowest AICc model is our best model for explaining percent spurious trends (Table 1). 

4. DISCUSSION
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We found support for most of our predictions: experimental studies focused on plants, and 

those in dynamic abiotic environments, were generally characterized by longer critical temporal

thresholds and a greater proportion of spurious trends. We also championed the importance of 

long-term data. First, for every 1% increase in abiotic variation (1% decrease in isothermality), 

we saw a 0.1-year (1.2 months) extension of the critical temporal threshold across taxa. 

Interestingly, we found that increased isothermality did not increase the proportion of spurious 

results, as we had expected. Second, we show that plant studies require longer critical temporal

thresholds than animals, especially in highly dynamic (low isothermality) systems and that plant

studies were characterized by a nearly two-fold increase in the proportion of spurious results, 

with 6% more misleading trends on average. Most importantly, we underscore the importance 

of long-term data. We see that nearly half (46/100) of the studies we investigated require 10 

years or longer for relationships between treatments to reach a temporal threshold where 

stable relationships occur, and 4 studies required longer than 20 years. 

We found that studies taking place in highly variable abiotic environments required the 

longest periods of study to reach consistent results. As such, those sites located in the most 

dynamic abiotic environments (those with low isothermality) required the longest periods of 

evaluation. For example, studies undertaken at the Cedar Creek and Arctic LTERs, which are 

characterized by the strongest seasonal extremes in our study, also had the longest critical 

temporal thresholds (32 and 16 years, respectively).  Given their abiotic variation, these 

systems may have required longer sampling efforts to capture the entire range of climate 

variation.  In fact, some of the datasets that lacked long term trends may merely have been the 

product of a truncated sampling effort, and that as the LTER network continues to age, these 
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trends may emerge with the continued collection of appropriate data. For example, while only 

12 of 52 studies sampled less than 15 years were found to have consistent long-term trends, we

confirmed consistent trends in more than half of the studies that lasted longer than 25 years. 

We also show that every study investigated contained at least one spurious trend, and most 

studies (63%) had more than the expected number of false positives, or type I error, expected 

at the traditional 0.05 alpha threshold, that is, the expected error rate on a linear regression 

applied to independent observations. Although we acknowledge that use of time series tools 

would mitigate the likelihood of these assertions, ecologists frequently do apply linear 

statistical models to temporal processes, increasing the likelihood of spurious interpretations of

these statistical patterns (Yoccoz 1991, Nakagawa and Cuthill 2007, Bahlai et al 2020)

We found that experiments investigating plant taxa require longer periods of study to form 

confident conclusions, and were more often characterized by high proportions of misleading 

short-term trends than those studies focused on animals. We hypothesize that our findings 

reflect specific life history traits of both plants and animals.  Some animals, due to their 

relatively short generation time, high mobility, and potential to track resources in novel 

environments, may respond rapidly to experimental manipulation (Kuussaari et al. 2009, Krauss

et al. 2010), and consequently not require long experimental periods to confidently determine 

results from manipulation. Plants on the other hand, with potentially longer generation times, 

lower dispersal and colonization abilities, and long dormancy periods, may respond more slowly

to experimental manipulation and be more characterized by spurious results, only reaching a 

consistent, delayed response after some temporal threshold is met (Krauss et al. 2010). While 

we do not directly measure the life history traits that may prove most important in altering the 
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rate of response to manipulation (i.e. dispersal ability, generation time, dormancy period, etc.), 

as a post hoc analysis, we determined the average size of each organism under study (height of 

each plant and length of each animal). We investigated whether organismal size could serve as 

a proxy for the life history traits that may contribute to the rate of experimental response. 

While we found that plants were three times larger than animals on average (ANOVA, F value = 

20.65, P <0.001), we did not find that size was a predictor of either temporal threshold or 

percent spurious trends. 

Delayed reactions are critical to consider from a conservation or management perspective, 

as slow to detect results following experimental manipulation may lead to inappropriate 

assessments of the status of a population’s abundance. For example, a macro-alga 

(Stephanocystis osmundacea) at the Santa Barbara Coastal LTER, only responded to 

experimental manipulation after six years of continuous plant removal, and only became 

consistent in the direction of its response after eight years of manipulation. In the presence of 

these delayed reactions, researchers may either over (or under) estimate the effects of 

experimental manipulation on organismal abundance in habitats that may not support them in 

the long-term (Hanski & Ovaskainen 2002; Helm et al. 2006). In the case of macro-algae, 

researchers may have concluded that plant removal had no effect on population abundance if 

research had not continued until the eighth year. 

Ecologists often work at five broad levels: organismal, population, community, ecosystem, 

and biosphere. While the focus of this meta-analysis is on the population level metric of 

organismal abundance, our technique is applicable to higher level community or ecosystem 

processes. For instance, future meta-analyses should focus on taxonomic or functional richness,
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diversity, or evenness at the community level, or biogeochemical processes at the ecosystem 

level, all of which are available in the forty-year-old LTER network portal. 

Given the extent of ongoing global land use and climate change, long-term experiments 

are more necessary than ever to understand, explain, and predict long-term trends.  With 

global climate change increasing abiotic variability worldwide, results from short term studies 

may become increasingly unreliable in the face of global climate change. New efforts should 

work in parallel, coordinating network wide experiments and syntheses across ecosystems and 

climates. Understanding the relationship between transient and long-term dynamics is a 

significant challenge that ecologists must tackle, and long-term experiments will be essential for

relating observation to theory now, as well as in the future.
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6. TABLES

Table 1: Parameter estimates for the best-performing models explaining critical temporal 

threshold and percent spurious trends

Critical Temporal Threshold

Fixed effects Estimate Std. Error Z Value P Value

Intercept 2.0092 0.1131 17.76 <0.001

Isothermality -0.208 0.0791 -2.629 0.009

Plant/Animal 0.4876 0.1414 3.449 <0.001

Percent Spurious Results

Fixed effects Estimate Std. Error df T Value P Value

Intercept 0.07891 0.02086 4.46615 3.783 0.016

Plant/Animal 0.08541 0.0288 10.93134 2.966 0.013
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7. FIGURES

Figure 1: Example moving window plots showing critical temporal thresholds and percent 

spurious results from a dataset with a long-term trend (a) and dataset without a long-term 

trend (b). Each plot represents a single experimental study tracking organismal abundance. Red 

dots show significant trends at the alpha = 0.05 level. Black dots represent non-significant 

trends. Positive regression slopes indicate that organismal abundance increased in the control 
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relative to treatment while negative slopes indicate the opposite. Panel (a) shows data from the

Konza Prairie LTER (knz.72.8) Andropogon gerardii response to moisture manipulation. Panel (b)

also shows data from the Konza Prairie LTER (knz.26.10) Dickcissel response to plant removal by

fire.
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Figure 2: Map showing 12 LTER sites with data in our study across North America and in 

Antarctica (inset). Colors represent climate variability as determined by isothermality. 

(BIOCLIM Variable 3). Lower isothermality (cooler colors) indicate higher annual climate 

variability. Higher isothermality (warmer colors) indicate lower annual climate variability.
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Figure 3: Graphical depictions of our best performing models: (a) Model showing negative 

relationship between isothermality (%) and critical temporal threshold (years), which is more 

apparent in plants (blue) than in animals (red). (b) Boxplot comparing percent spurious results 

between studies of animals and plants. The central bar gives group median, boxes give the 1st 

and 3rd quartiles, closed circles show outliers, and open circles show group mean. 
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