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open access. Efforts to protect biodiversity require the best
possible scientific understanding of human activities, bio-
diversity trends, ecosystem functions and—critically—the
feedbacks among them.

1. Dynamic feedbacks are causes and
consequences of biodiversity change

Increasing recognition of irreversible biodiversity change
and unsustainable ecosystem exploitation has spurred unpre-
cedented collaboration among scientists and policymakers
worldwide to mitigate these ecological crises [1–5]. Biodiver-
sity is in crisis as a result of habitat loss, overharvesting and
other pressures associated with humanity’s accelerated use of
natural resources. The diversity of life—from genes to social–
ecological systems—plays a major role as both a driver of
ecosystem dynamics throughout the biosphere and a response
to changes in ecosystem processes; greater biodiversity can
enhance ecosystem functioning [6–8] and ‘nature’s contri-
butions to people’ (Glossary in box 1), while also responding
to human activities such as cultivation or harvesting. Biodiver-
sity, its responses to human activities, and the benefits it can
provide to human wellbeing are now at the centre of global
science–policy initiatives such as the Intergovernmental Panel
on Biodiversity and Ecosystem Services (IPBES) and the
new Global Biodiversity Framework of the Convention on
Biodiversity (CBD) [2].

The science underpinning these major initiatives has
clearly demonstrated direct effects of biodiversity on ecosystem
functioning and humanwellbeing (B-E-H) (figure 1), as well as
dynamic feedbacks (§2) that influence how B-E-H system
components change over time. Direct effects include the posi-
tive effect of species diversity on productivity and nutrient
dynamics in plant and animal systems [14,15], increased
productivity and food quality benefitting humans through an
ecosystem service such as food provision [7,16–18], and food
management systems that facilitate biodiversity [19,20]
(figure 1). Direct effects also include the human actors benefit-
ing from nature, while also engaging in activities that benefit
or harm biodiversity. Direct effects alone cannot tell the full
story [21]; system dynamics commonly feature feedbacks
(figures 1 and 2), and the biosphere is a system comprising
the diversity of life on earth, ecosystems and human built
structures and systems.

The next generation of biodiversity scholarship will more
effectively understand feedbacks as essential features of
any focus on biodiversity and how it changes in relation to
human activities and ecosystem functioning [22]. This knowl-
edge will better inform policy platforms and actions taken in
compliance such as monitoring biodiversity. Here, we consider
biodiversity, ecosystem functioning and humanity as com-
ponents of a system, and in doing so, we highlight the central
role that feedbacks play in sustaining dynamic relationships
among these components (§2). Next,we briefly reviewhow cur-
rent leading policy platforms consider the role of feedbacks and
highlight opportunities for strengthening consideration of feed-

for collaborative action (§5) to meet these challenges to
support policy-relevant science in a changing world, as our
understanding of that world also changes.

2. Feedbacks are essential features of
biodiversity–ecosystem functioning–human
relationships

Biodiversity and its relationships to ecosystem functioning and
human wellbeing depend on feedbacks within and between
these system components (figures 1 and 2) [23–25]. The feed-
back concept is often used to describe specific dynamic
interactions that are considered real and observable in human
ecological systems. The feedback concept is used to refer to
interaction networks [26] or dynamics of a complex system
that amplify or dampen an outside signal or effect. The concept
can be usedmore loosely as a communication tool, for example,
when a species’ ‘final descent into extinction’ reflects synergistic
effects of multiple stressors, the synergy may be referred to as
involving a feedback [27]. Feedbacks between biotic and abiotic
processes driving the global carbon cycle have received great
attention in climate science and policy because they cause sys-
tems to change in non-intuitive ways over time [23,25].
Additionally, feedbacks between human and ecological sub-
systems have become an important area of interdisciplinary
research and for guiding discourse [28–30]. These research
programmes all contribute to the solution we are addressing
here—to better understand feedbacks specifically in the B-E-H
system as a whole [31], and how best to apply this understand-
ing to broad scale policy, communication and knowledge
integration programmes.

A simple definition of feedback is when one part of a
system affects another part of that system that in turn affects
the first part; in other words, a system output affects the
input of the same system. This definition is consistent with sys-
tems biology, recognizing feedback as a control mechanism in
complex systems. Positive feedbacks are self-reinforcing, and can
drive rapid change and even destabilize systems [32] (figure
2a). Negative feedbacks (figure 2b) are self-dampening and
stabilizing, and can buffer systems against change [33,34].
Modelling feedbacks as opposed to direct effects involves
approaches such as equations that relate the behaviour over
time of a system to the state of that same system in some way.
It is this self-dependent relationship that distinguishes
models with dynamic feedbacks from models that include
direct and indirect effects but do not relate these in feedbacks
(figure 2).

Feedbacks explain change and stability in systems
involving biodiversity, ecosystem functioning and human
wellbeing. Among the processes that maintain biodiversity,
feedbacks determine stability and future trajectories of popu-
lation, community and ecosystem dynamics [33,35,36], from
shallow lakes [37] to tropical rainforests [38] to coral reefs
[39]. First order biological processes—growth and reproduc-
tion—are positive feedbacks [40]. One of the most pervasive
feedbacks in ecological systems is density dependence of popu-
lation dynamics, in which population density at one time
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backs (§3). We then identify key scientific knowledge gaps (§4)
that we suggest limit the full uptake of scientific understanding
into policy platforms and deserve organized and collaborative
investment for rapid progress. Finally, we outline an agenda
RSPB20210783—28/9/21—14:42–Copy Edited by: Not Mentioned
influences population growth at a future time, which in turn
influences future population density (figure 2). Stronger den-
sity dependence within species than among species is one of
the primary explanations for the persistence of biodiversity in
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Figure 1. Direct effects, indirect effects and feedbacks in the biodiversity–ecosystem functioning–human wellbeing system. (a) Direct effects are one-way effects of,
for example, species richness on an ecosystem function; biodiversity–ecosystem functioning (BEF) has emphasized demonstrating the direct effect of diversity on
functioning (dashed arrow). (b) Indirect effects are summed direct effects. (c) Feedbacks are iterative and ongoing, often looping, effects of system components on
each other. (d ) In an aquatic example, invertebrate and vertebrate diversity enhance ecosystem functions such as biomass production that may be harvested for food
and livelihood by people. Harvesting may maintain some fish at high population growth rates by reducing population densities thereby maintaining biodiversity;
(e) in an agricultural plant–pollinator system, a full feedback between diversity, plant seed production and human activities has led to recognition that conservation
measures to protect pollinator diversity may benefit humans by enhancing crop yields.

Box 1. Glossary

Biodiversity: variety of life. We use the concept to include people in the living earth system; biodiversity is measured at many
scales and in many ways, from genetic diversity to functional diversity to behavioural or cultural diversity.

Feedback: modification or control of a process by the results or effects of the same process.
Ecosystems: joint biotic/abiotic systems of life, characterized by dynamic stocks and fluxes of energy, materials and infor-

mation and their feedbacks.
Biodiversity–ecosystem functioning (BEF) relationships: refers to the relationship between diversity per se and the mag-
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nature and for the positive relationship between biodiversity
and ecosystem services [40–42] (figure 2c). Negative (dampen-
ing) density-dependent feedbacks of predation, disease and

nitude and stability of an ecosystem functions. BEF refers
and above the importance of total abundance, biomass or

Ecosystem functioning: the processes of energy flow (e.g
information processing (e.g. evolution) carried out by living
involving multiple genetic and functional elements of biod
energy forms.

Ecosystem services: the value of ecosystem functions to p
services for human wellbeing. Although different opinions
based approaches to biodiversity conservation and sustaina
assessed in a variety of ways, from economic values to cultu

Natures contributions to people (NCP): a pluralistic view
[12,13]. Peterson et al. [13] expect the view to encourage a re
lation, translation and discussion among many different pe
RSPB20210783—28/9/21—14:42–Copy Edited by: Not Mentioned
pathogens on species’ performance cause diverse systems to
maintain diversity and ecosystem functions over time more
than less diverse systems [24,43,44] (though these ecological

role diversity plays in ecosystem functioning that is over
sition of the biological assemblage [9].
ary production), material cycling (e.g. carbon cycling) and
s. Functions are understood to reflect interaction networks

ty, and include stocks and pools of biomass, elements and

[10], and originally, defined as ecosystem-based goods and
such as that ecosystem services could be viewed as ‘rights-
se’ [11], it is important to emphasize that the value can be
lues, in intrinsic, instrumental or relational systems [12,13].
e value of ecosystems and ecosystem functioning to people
ion of pluralism and the need for a richer process of articu-
tives on people’s relationship with nature.
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interactions can also be involved in positive feedbacks).
Density-dependent processes are at the heart of compensatory
dynamics in which a decline in density of a competitive
dominant allows competitors to increase in abundance and
maintain ecosystem functions in a negative feedback
[40,42,45]. In some cases, we can study the dynamics of part
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Figure 2. Feedbacks in population dynamics (a,b) and community dynamics (c
population density (Nt) in closed systems comprising one population. (c) Dens
effect of plant diversity on plant productivity (an ecosystem function). Nutrie
enhancing productivity and by changing plant diversity and composition. Whe
fully resolved (the grey question mark).
of the system—for example, we isolate feedbacks that maintain
diversity when we study compensatory dynamics—but to

fully understand the problems we now face, we have to con-
tinue the research process by expanding our focus from the
dynamics of a subsystem to the more complex B-E-H systems.

There are many examples of change that we now under-
stand to depend on feedbacks between biodiversity, ecosystem
processes and human activities ([24], e.g. [33,35,46]). Feedbacks
in the pollinator/plant system provide a particularly good
example [47,48] (figure 1e). Pollinator functional diversity can
increase pollination and plant seed production [49,50], and
RSPB20210783—28/9/21—14:42–Copy Edited by: Not Mentioned
plant diversity through niche complementarity (different polli-
nators pollinate different plants) aswell as changes in pollinator
behaviour [51,52]. This creates a positive feedback: pollinator
diversity affects plant diversity which can in turn feedback to
enhance and sustain pollinator diversity (figure 1e). Further,
humans benefit when the plants are of cultural or agricultural
value. Some agricultural practices, land use change and pol-
lution have dramatically reduced pollinator abundance and
diversity [53,54], potentially contributing to loss of value in
crop yields. Negative effects of human activities on pollinator
diversity and the recognition of the feedbackof human activities
tohumanbenefits throughcroppollinationhavemotivated con-
servation and management actions that focus not only on
reducing pollution but also on restoring diversity in plant–pol-
linator–human systems [55]. The inclusion of conservation
activities focused on pollinator diversity creates a feedback
involving humans, pollinators and plant diversity (figure 1e).

nutrient supply

plant community
productivity

10 20 30 40 50
time

25 50 75 100
time

– 1ert

Nt = Nt – 1
r

1– (t – t)
K

+

+

+/–

rowth (negative feedback)

ial growth (positive feedback)

ositive and (b) negative feedback between population growth rate (dN/dt) and
ndent feedbacks among plant populations and species can lead to a positive
ly can modify the relationship between diversity and productivity by directly
re is a feedback between nutrient supply, diversity and productivity is not yet



3. Feedbacks have been under-emphasized in
major science-based policy platforms

Major science-based policy platforms guide decisions about a
broad range of actions that impact biodiversity change,
including setting targets for sustainability (UN Sustainable
Development Goals, SDGs) and the targets in the post-2020
Global Biodiversity Framework of the CBD [56]. The IPBES
framework [1] provides the broader community a system
for understanding how biodiversity, inclusive of humanity
and human diversity (box 1), are related to a sustainable bio-
sphere [57]. This framework is offered with the purpose of
aligning assessments of change and knowledge development
in biological and social sciences with the policy challenges
of the coming decades [11,57]. These challenges include
state-level investments in biodiversity observation and con-
servation [56,58], as well as integration of policies to jointly
mitigate climate change and biodiversity change [3,59,60],
and to manage food systems for nature positive outcomes
and sustainable food provision [61].

The IPBES platform also channels and motivates scholar-
ship and scientific research to fill gaps and improve methods
for modelling scenarios. It relies on synthesis of scientific
evidence for the causes and consequences of biodiversity
change, combinedwith scientific models to project future scen-
arios [62]. There is littlemention of full feedback cycles between
biodiversity and ecosystem functioning (BEF) (e.g. Figure 1a)
in the summary of models used to generate projections and
scenarios for the most recent IPBES report. The few examples
are in the integrated assessment models involving social and
economic systems coupled with natural systems [62]. The
assessment report indicates that feedbacks are identified as
an outcome of integrated system models, rather than an
architectural feature [62]. The IPBES approach to scenarios
does include qualitative modelling methods that can capture
feedbacks, though thesemethods are largely restricted to smal-
ler-scale social–ecological system studies as in fisheries (e.g.
[63]), yet a major gap exists in the integration between different

socioecological systems (SES) in which biodiversity and
functioning are lumped into one component. Filling these
knowledge gaps requires targeting feedbacks as scientific
research subjects, and considering how assessments and
policies can best reflect this knowledge development. We
suggest that these challenges might be used to prioritize
major investment to expand the BEF paradigm and enhance
our knowledge frameworks to support biodiversity policies
and to realize sustainability goals (Agenda for Action, §5).

(1) We cannot robustly relate current or recent temporal trends in
biodiversity to likely future trajectories of biodiversity change
in most cases. As we have noted above, future biodiversity,
and diversity’s contribution to ecosystem services,may not
be accurately projected by extrapolating a historical trend
in biodiversity forward in time because of feedbacks
among biodiversity, ecosystem function and human activi-
ties [21,36,62,64]. Consideration of feedbacks highlights
that human activities and ecosystem functioning are part
of changing biodiversity in the system, and forces us to
reframe this question such that we cannot only examine
biodiversity trajectories. To estimate long-term behaviour
of a B-E-H system in scenarios that might be used to
guide decisions, the dynamics—and in particular, feed-
backs such as how biodiversity change and its causes can
influence future biodiversity—need to be considered.

(2) We do not understand the B-E-H system well enough to relate
observed recent trends in biodiversity to likely future trends in
ecosystem function and human wellbeing. Dynamics of one
part of the system (for example, diversity) depend on
other parts of the system (humans, ecosystem functions),
and vice versa. Because feedbacks characterize how bio-
diversity, ecosystem functioning and human activities
change together over time, projected future trajectories
or scenarios of diversity, ecosystem functioning or
human wellbeing require consideration of all three com-
ponents. One pervasive consequence of this knowledge
gap is the persistent decoupling of biodiversity and func-
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types of interactions in order to more comprehensively charac-
terize the major feedbacks between or within, for example,
ecosystems and fisheries. The IPBES methods assessment
report notes that ‘Failure to consider such [feedback] dynamics
can potentially render scenario analysis incomplete, inconsist-
ent or inaccurate’. IBPES authors and ecosystemmodellers also
highlight the risks associated with including feedbacks based
on wrong or incomplete understanding. It is recognized that
knowledge gaps—both scientific and in the general under-
standing and application of science—are a barrier. As we
move to consider feedbacks more, it is important to recognize
that there are many ways to do this, including quantitative
modelling and heuristic consideration as illustrated in the
pollinator example (figure 1e).

4. Key knowledge gaps that present grand
challenges for biodiversity research

Our survey revealed seven knowledge gaps in biodiversity
science when we considered the B-E-H system as a whole
system, rather than take previously prevalent perspectives
that emphasize two of the three components—BEF that
tends to consider human activities as outside the system, or
RSPB20210783—28/9/21—14:42–Copy Edited by: Not Mentioned
tioning in assessment and monitoring programmes; most
of the biodiversity observations being assembled for bio-
diversity change assessments (e.g. BioTIME, PREDICTS,
GEO BON) do not systematically include accompanying
measures of ecosystem processes or human activities.
Though GEO BON is moving in this direction with essen-
tial ecosystem variables, such an advance must be made
in the context of statistical approaches that can allow
detection and attribution of joint changes in biodiversity,
ecosystem functioning and human wellbeing.

(3) Trends in B-E-H components depend on scale, yet we still do
not understand exactly how, and what feedbacks play in deter-
mining scale-dependence. Trends observed at one scale do
not necessarily predict trends at higher or lower spatial res-
olutions [65], and this gap is amajor barrier to synthesizing
observations across studies and programmes to infer
biodiversity change [22]. We require new theory to guide
experimental tests and observation programmes that
allow us to more deeply understand feedbacks between
diversity change and ecosystem functioning, and how
these are linked in coupled human–natural systems
across scales of space, time and organization [22] (figure
3). Such theory and experimental work would be explicit
about temporal patterns in BEF, spatial and temporal
variation, and would identify links between feedbacks
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involving ecosystem functioning and multiple dimensions
of diversity, and the role that human systems play in these
biodiversity–ecosystem functioning linkages.

(4) Experimental tests for direct BEF effects have omitted feedbacks.
The majority of experimental tests of the relationship
between BEF conducted in the last two decades has
employed an experimental design that intentionally dis-
rupts potential feedbacks—for example, by weeding out
species that colonize [66] or by replacing species that are
lost [67] over the course of the experiment to maintain
diversity treatments. Though this approach clearly isolates
direct effects of biodiversity on ecosystem functions (figure
1a), in doing so these procedures prevent feedbacks (e.g.
Figure 2c) from playing out over time. Consequently, hun-
dreds of experiments frequently reviewed and synthesized
as strong evidence for direct effects of diversity on ecosys-
tem functioning [6,8] (figure 1a) cannot be used to
demonstrate consequences of the feedbacks between
diversity and functioning because each system studied
was controlled to prevent them from occurring.

(5) Human–biodiversity feedbacks are still not well understood,
allowing to persist a perception within the western science
framing that people affect biodiversity but that there is
little feedback from biodiversity to people [1,29,31,61,68].
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Figure 3. Models, experiments and observation systems are needed that explic
programmes tend to focus in one part of this space—for example, generating
multiple (modified from Gonzalez et al. [22]). (b) Hypothetical data copied fr
biodiversity, human activities and ecosystem functions change at the same le
processes (a). (Online version in colour.)
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The current IPBES framework acknowledges this knowl-
edge gap: a high-level message (Key Finding 3.3) is that
scenarios and models ‘need to be better linked in order
to improve understanding and explanation of important
relationships and feedbacks between components of
coupled social–ecological systems’ [62]. The challenge we
face is, therefore, to integrate the multiple human (behav-
ioural, demographic, social, cultural, political, economic,
institutional) components of the B-E-H system in ways
that reflect the dependence of human wellbeing on biodi-
versity as well as the effects of humans on biodiversity
[29,69]. Meeting this challenge requires transdisciplinary
scholarship to identify the dominant feedbacks and feed-
backs of particular interest to stakeholders, as well as to
develop approaches to model these feedbacks and to com-
municate their effects on system projections and scenarios.

(6) Develop an operational understanding of how different dimen-
sions of biodiversity are involved in feedbacks over time.
Estimates of biodiversity change are based on observations
of some dimension of biodiversity as defined in conven-
tional scientific concepts: alleles, genes, traits, species (or
operational taxonomic units, OTU) and models of phylo-
genies. Not only do we still require great investment in
organized biodiversity sampling and monitoring [9,70],

102 104 107 108 1010

minute hour
year decade

century

temporal scale (s)

ecosystem services

ress feedbacks and scales of space, time and biological organization. (a) Many
hin the dashed box—and we argue for approaches that relate observations at
illustrating that we should strive for observations and understanding of how
spatial and temporal resolution, in the context of other spatial and temporal
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we lack scientific knowledge to relate changes in observed
diversity at different levels of biological organization
(genes versus species; figure 3) to changes in diversity at
other levels, changes in ecosystem functioning and feed-
backs between them. One key element of BEF feedbacks
is trait expression, linking information in genes and gen-
omes to development and phenotypic variation, and as
such BEF feedbacks influence which genes and genomes
persist in communities [71]. We require new theory,
models and empirical understanding to relate trait
expression to underlying genetic diversity, and to explain
variation in patterns of trait expression in space and time
as they relate to ecosystem functioning and human actions.

(7) Develop theory and workflows that explicitly relate infor-
mation from emerging technologies to knowledge that can
be used to deepen our understanding of feedbacks. Tech-
nological tools for observing biodiversity allow high
throughput and remote sensing of biodiversity at the
finest levels of biological organization (viruses, genes,
microbes) aswell as somemeasures of ecosystem functions
[72–74]. As vast amounts of observational data become
available, we face the challenge of understanding how
to interpret them in the context of dynamic feedbacks.
Feedbacks are difficult to detect from most observational
datasets because they require coordinated observations
of several facets of a system (e.g. biodiversity, an ecosystem
function such as biomass production, human use of the
biomass, plus any human–biodiversity interactions), and
in nearly all cases, these coupled measurements are not
made. Many observations of biodiversity cannot be
robustly integrated into models of change over time
without accompanying theory and empirical evidence
for relationships between observations and the system
components they represent.

5. Agenda for action
We have outlined seven knowledge gaps in B-E-H scientific
knowledge that limit our current capacity to assess changes
to the biosphere. Resolving these knowledge gaps will
require investment in scientific research programmes
worldwide to employ diverse, interdisciplinary and even
transdisciplinary approaches in the field, lab and in silico.
Outside specialist research communities, B-E-H feedbacks
and their consequences are not well represented in concep-
tual diagrams and models used by policy experts and

decision makers to understand biodiversity change and its

concept when identifying priorities for biodiversity obser-
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beyond the scope of this article.
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(1) Collaborate and connect. We must convene and support
collaborations and knowledge development that reflects
the ways people know and interact with biodiversity.
The action required is to come together to identify knowl-
edge development priorities at local, regional and global
scales that reflect the depth and diversity of how humans
and biodiversity are co-dependent. We must take the
time to listen and learn from each other, and build from
these conversations to the observation and solutions pro-
grammes we call for. Doing so will result in an inclusion
of a broader range of knowledge systems and perceptions
of human–biodiversity interactions [76], benefitting an
understanding of feedbacks that is both globally and
locally relevant worldwide. People serving as observers,
knowledge keepers and knowledge users, as ecosystem
service beneficiaries and decision makers play critical
roles in the actual B-E-H feedback cycles, because assess-
ment and management are part of the cycles! Scientific
and science–policy collaborations in biodiversity research
should strive for cultural, geographical, political and
ethnic diversity among researchers and within research
projects [76]. We can build on existing science–community
partnerships and extending these into biodiversity
observation and assessment networks [77].

(2) Build and sustain multi-scale models to develop and revise
scenarios of biosphere change. Though models exist to pro-
duce biodiversity scenarios for the future [40,78], we
must double down on our capital and personnel invest-
ments in these models to not only simulate changes in
biodiversity but also the feedbacks between biodiversity
change and changes in human activities and ecosystem
functions. To serve the needs of science and society, we
must be able to update these models as new observations
become available, and to produce scenarios at a range of
scales relevant to human decisions—from the scale of a
plot of land to that of a country or the globe. Further,
we must be modelling biodiversity in the context of the
full system, which may be achieved by integrating biodi-
versity models with other models such as climate models
or integrated assessment models [5,79]. These models
must be developed and improved in conjunction with
the increased effort in biodiversity observatories, advan-
cing statistical procedures for robustly detecting and
attributing change, and within the context of the kinds
of decisions that will need to be made.

(3) Build and sustain national and global observatories for tem-
poral change in biodiversity, ecosystem functioning and

human activities. Integrated observations must be made
likely consequences over time. Greater emphasis on this rep-
resentation can help minimize overlooking this important

at different spatial scales with worldwide coverage [72],
going beyond the ad hoc approaches to sampling of biodi-
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communities within them [58,81]. New
as that proposed by Kühl et al. [77], mu
munity involvement and data collec
and integrated within a broader con
assessment. To succeed, these requi
action as called for here and by other

(4) Experimentally and iteratively test the m
our understanding. To understand f
tional programmes (Action 3) shou
theory that includes feedbacks, and c
imental programmes to understand
observatories, the experimental an
grammes must be run by collabora
modellers and end users from a broa
countries and cultural backgrounds,
ing indigenous and local peoples fro
and south. This action item is to incr
experimental programmes that help
in our understanding of biodiversi
prioritize those programmes led by
multi-disciplinary research and data

(5) Identify and support a sustained orga
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on existing scientific knowledge an
research community to develop rese
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grammes, can promote the research a
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Along the way, the research communi
front additional logistical challenges that c
scientific advances. These have received a
and resolving these challenges is critical
agenda we have outlined here. These inc
lack of open science and the fact that
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database [82], (ii) limited technology in
observations from different methods are n
nated [58] and (iii) the clear need f
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